Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses

نویسندگان

  • Po-Ling Loh
  • Martin J. Wainwright
چکیده

We investigate the relationship between the structure of a discrete graphical model and the support of the inverse of a generalized covariance matrix. We show that for certain graph structures, the support of the inverse covariance matrix of indicator variables on the vertices of a graph reflects the conditional independence structure of the graph. Our work extends results that have previously been established only in the context of multivariate Gaussian graphical models, thereby addressing an open question about the significance of the inverse covariance matrix of a non-Gaussian distribution. The proof exploits a combination of ideas from the geometry of exponential families, junction tree theory and convex analysis. These population-level results have various consequences for graph selection methods, both known and novel, including a novel method for structure estimation for missing or corrupted observations. We provide nonasymptotic guarantees for such methods and illustrate the sharpness of these predictions via simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Structure of Wavelet Covariance Matrices and Bayesian Wavelet Estimation of Autoregressive Moving Average Model with Long Memory Parameter’s

In the process of exploring and recognizing of statistical communities, the analysis of data obtained from these communities is considered essential. One of appropriate methods for data analysis is the structural study of the function fitting by these data. Wavelet transformation is one of the most powerful tool in analysis of these functions and structure of wavelet coefficients are very impor...

متن کامل

Estimating Structured High-Dimensional Covariance and Precision Matrices: Optimal Rates and Adaptive Estimation

This is an expository paper that reviews recent developments on optimal estimation of structured high-dimensional covariance and precision matrices. Minimax rates of convergence for estimating several classes of structured covariance and precision matrices, including bandable, Toeplitz, and sparse covariance matrices as well as sparse precision matrices, are given under the spectral norm loss. ...

متن کامل

Covariance Estimation: The GLM and Regularization Perspectives

Finding an unconstrained and statistically interpretable reparameterization of a covariance matrix is still an open problem in statistics. Its solution is of central importance in covariance estimation, particularly in the recent high-dimensional data environment where enforcing the positive-definiteness constraint could be computationally expensive. We provide a survey of the progress made in ...

متن کامل

Shrinkage Tuning Parameter Selection in Precision Matrices Estimation

Recent literature provides many computational and modeling approaches for covariance matrices estimation in a penalized Gaussian graphical models but relatively little study has been carried out on the choice of the tuning parameter. This paper tries to fill this gap by focusing on the problem of shrinkage parameter selection when estimating sparse precision matrices using the penalized likelih...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012